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of China 
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Abstract. The self-avoiding walk problem on the L lattice is treated with a position-space 
renormalisation group approach using a ‘centre-rule’ weight function. 

An L lattice is a directed square lattice having the property that each bond on a path 
must be directed at right angles to its predecessor. Such a lattice has also been referred 
to as the two-choice 90” lattice (Wall et a1 1955) and the underlying Manhattan square 
lattice (Kasteleyn 1963, Malakis 1975, 1984). The name L lattice is due to the fact 
that a self-avoiding walk (SAW) on such a lattice can be viewed as a concatenation of 
an L-shaped, two-step walk (Guttmann 1983). 

The purpose of this comment is to try to improve the position-space renormalisation 
group (PSRG) approach of Malakis (1984) for the L lattice using the approach proposed 
by Chao (1985) for SAWS on an ordinary lattice. Although the results of Malakis (1984) 
seem to be reasonable and are able to demonstrate that SAWS on the L lattice belong 
to the same universality class as those on the non-oriented lattice, there are some 
inconsistencies in the renormalisation scheme that will be pointed out in our discussion. 

The renormalisation scheme of Chao (1985) for a SAW on a square lattice adapts 
a ‘centre-rule’ weight function, which is a modified version of the ‘corner rule’ weight 
function of de Queiroz and Chaves (1980) and the similar approaches of Redner and 
Reynolds (1981). Basically, it is a straightforward extension of the scheme commonly 
used for a PSRG treatment for bond percolation on the square lattice (Reynolds et a1 
1977). Therefore, for SAWS on the L lattice, we will use the family of cells illustrated 
in figure 1. Without bond orientation, such cells are exactly the same as those used 

Figure 1. Cells with size b = 3, 5 and 7 used for the PSRG treatment for the L lattice. 

t On leave from the Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil. 
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for SAWS on the ordinary square lattice. It should be noted that other than the origin 
for SAWS to start, such cells also have bonds on the bottom edges deleted in contrast 
with those of Malakis (1984). 

Similar to the case of SAWS on the ordinary square lattice, the cells with size b even 
and odd should be grouped separately, due to differences in the location of the origin 
in the cells. We will treat only the b-odd cells which can have a majority of bonds 
pointing either upward or downward. The renormalisation of such cells should preserve 
the direction of the majority of bonds. The cells illustrated in figure 1 have a majority 
of bonds pointing upward. Also, for the b-odd cells, either one of the two sites in the 
middle of the central vertical line can be chosen as the origin. The origins of the cells 
shown in figure 1 are chosen consistently in the sense that all corresponding bonds 
incident from the origin of each cell have the same direction. We then sum the statistical 
weights for all spanning SAWS that traverse a cell of size b in the upward direction via 
the origin to obtain a polynomial Gb as a function of the fugacity K ;  such polynomial 
is then renormalised to a bond directed upward having fugacity K’ to yield a recursion 
relation 

K ‘ =  Gb(K). (1) 

From such recursion relation, we obtain the non-trivial fixed point K $  and the critical 
exponent vb through the formula (see Stanley et a1 1982) 

with A =(dG,(K)/dK)I,*.  
Malakis (1984) has considered a cell-to-bond PSRG using a b = 3 cell with bottom 

edge included. The ‘spanning’ of the cell is defined as the average of the set of SAWS 

that begin at each of the three vertices at the bottom edge and exit by way of the top 
edge. Thus, both SAWS that begin with a vertical step as well as a horizontal step are 
considered. However, since all SAWS have to exit by way of a vertical step, they should 
always begin with a horizontal step on the bottom edge of a cell so as to be consistent 
with the characteristic of the walk. In our treatment, it should be understood that the 
interconnection of paths at the ‘interfacing’ between cells is always via the horizontal 
bonds omitted in the treatment. In our opinion, it is necessary to delete the bottom 
edge of the cells, so as to avoid inconsistency as well as ramified configurations in the 
‘interfacing’. Furthermore, Malakis has considered only the 6 = 3 case. Judging from 
the defects of his method, it is therefore questionable that the results using larger cells 
can converge to a correct value. 

For the b = 3 cell, we readily obtain 

G3( K ) = 4K5 (3) 

which when renormalised to a bond gives the fixed point K; = 0.7071 and v3 = 0.6826. 
For 6 = 5, the graph in figure 1 can be divided into four graphs illustrated in figure 

2 according to the orientation of bonds at the origin. The spanning SAWS in figure 2 
cnn be enumerated more easily and the sum gives 

Gs(K)=2K”+4K13+16K9 (4) 

which yields K ?  = 0.7013 and vs = 0.7224. Using a similar scheme, it is still possible 
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Figure 2. The b = 5 cell is divided into four graphs. Spanning SAWS in the upward direction 
are considered. 

to enumerate all the SAW paths to obtain 

G7( K )  = 2K3' + 40K 33 + 70K 29 + 88 K 2 5  + lOOK 2 1  + 88 K + 64K 13. (5) 

The renormalisation of G, into a bond gives KT = 0.6874 and v, = 0.7279. The results 
of cell-to-bond renormalisation indicate that K * decreases whereas v increases as the 
cell size b increases. 

It is expected that the value of v should converge to the exact one as b --* CO. Such 
convergence behaviour can be seen from the graph for Y-' versus l / ln  b illustrated in 
figure 3. The extrapolation is by no means conclusive but indicates the possibility for 
approaching v = 0.75. 

We have also calculated results for cell-to-cell renormalisation using equations 
similar to (1) and (2).  The renormalisation of b = 5 cell to 6' = 3 cell can be obtained 
by using the results of (3) and (4) to yield KT,) = 0.6960 and vgI3  = 0.8272. Similarly, 
using (3), (4) and (S), we obtain KT,, = 0.6792 and v7,3 = 0.8007 together with K7*/5 = 
0.6656 and v , / ~  = 0.7699. Such results indicate a decreasing behaviour for both K* 
and Y as b/ b' decreases and that the results of v may converge toward the same value 
as the case for cell-to-bond renormalisation. 

Our results for cell-to-cell approach indicate tht the critical fugacity K ,  should be 
less than 0.6656, which is consistent with that of Guttmann (1983). 

In conclusion, we have treated the SAW problem on the directed L lattice with the 
same scheme as that for a non-directed lattice and obtained results in agreement with 
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Figure 3. A plot for Y - '  as a function of l / ln  b for cell-to-bond renormalisation with points 
corresponding to results for b = 3, 5 and 7 .  
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those of Guttmann (1983) and supporting universality behaviour pointed out by Malakis 
(1975, 1984). 
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